Unsupervised Word Sense Disambiguation Using Alpha-Beta Associative Memories
نویسندگان
چکیده
We present an alternative method to the use of overlapping as a distance measure in simple Lesk algorithm. This paper presents an algorithm that uses Alpha-Beta associative memory type Max and Min to measure a given ambiguous word’s meaning in relation to its context, assigning to the word the meaning that is most related. The principal advantage of using this algorithm is the ability to deal with inflectional and derivational forms of words, enabling the possibility of bypassing the stemming procedure of words involved in the disambiguation process. Different experiments were performed, with two parameters as variables: the context window size, and whether stemming was applied or not. The experimental results (F1-score) show that our algorithm performs better than the use of the overlapped metric in the simple Lesk algorithm. Moreover, the experiments show that as more information is added to the sense or meaning, and the overlap metric is used, the precision of the simple Lesk algorithm is decreased-in contrast to the performance of our algorithm.
منابع مشابه
Noun Sense Induction and Disambiguation using Graph-Based Distributional Semantics
We introduce an approach to word sense induction and disambiguation. The method is unsupervised and knowledge-free: sense representations are learned from distributional evidence and subsequently used to disambiguate word instances in context. These sense representations are obtained by clustering dependency-based secondorder similarity networks. We then add features for disambiguation from het...
متن کاملA Fully Unsupervised Word Sense Disambiguation Method Using Dependency Knowledge
Word sense disambiguation is the process of determining which sense of a word is used in a given context. Due to its importance in understanding semantics of natural languages, word sense disambiguation has been extensively studied in Computational Linguistics. However, existing methods either are brittle and narrowly focus on specific topics or words, or provide only mediocre performance in re...
متن کاملUnsupervised Sense Disambiguation Using Bilingual Probabilistic Models
We describe two probabilistic models for unsupervised word-sense disambiguation using parallel corpora. The first model, which we call the Sense model, builds on the work of Diab and Resnik (2002) that uses both parallel text and a sense inventory for the target language, and recasts their approach in a probabilistic framework. The second model, which we call the Concept model, is a hierarchica...
متن کاملImproving Subjectivity Detection using Unsupervised Subjectivity Word Sense Disambiguation
In this work, we present a sentence-level subjectivity detection method, which relies on Subjectivity Word Sense Disambiguation (SWSD). We use an unsupervised sense clustering-based method for SWSD. In our method, semantic resources tagged with emotions and sentiment polarities are used to apply subjectivity detection, intervening Word Sense Disambiguation sub-tasks. Through an experimental stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Polibits
دوره 54 شماره
صفحات -
تاریخ انتشار 2016